A PRIMER FOR SOLID EDGE

The purpose of this primer is to give someone who has never used Solid Edge (SE) a basic understanding of how Solid Edge works. This is so that they can learn quickly without making basic mistakes that are hard to fix, and to avoid doing damage to existing SE documents.

For those of you that already use AutoCAD you will find that very little of your AutoCAD experience is relevant in SE. The good news is that SE will be used to do things that AutoCAD isn’t a good choice for, not as a replacement for AutoCAD.

SE has three main environments, parts, assemblies, and draft. It is much more analogous to the real world than AutoCAD is. To build anything in SE you need parts, just like the real world. Some people of course will work mostly in the part environment because their business is making parts, machined, cast, molded whatever. Other people will work mostly in assemblies, using a library of parts to construct assemblies, in very much the way you do in the real world. Finally you need to communicate how these parts or assemblies are made, and much of that is still done on paper in 2D. So the draft environment creates 2D drawings of parts and assemblies, which you would have done previously in AutoCAD.
Moving from the 2D world of AutoCAD to the 3D world of Solid Edge is at first a culture shock. Your initial reaction will be that this going to be very time consuming compared to 2D drawing. In fact it can be, until you realize that working in 3D has so much benefit beyond producing 2D drawings that it really does not matter that it took longer. Some tasks however, like plan views and elevations for an entire jobsite can be done CORRECTLY in much less time in 3D, once you have substantial parts library to work from. That parts library is the most expensive part of 3D software. Companies worry about the cost per seat for the software. It is a tiny fraction of cost that will get invested in building a library of sufficient depth to allow you to work without interruptions to create every little part needed. We are there, that investment has been made. The only way to make it pay is to get more seats of Solid Edge so that the library gets used by more than one or two people.
HOW SOLID EDGE WORKS

PARTS

It is important to realize that Solid Edge is not so much a drawing program as it is a database and a Bill Of Materials (BOM) program. The basic entity in SE is the 3D model called a part. Parts are not made from lines, they are made from features. A piece of channel iron can be represented by an extruded feature called a protrusion. A 2D profile of the C shaped channel is extruded some distance to create a solid object. That 2D profile is called a sketch, but in fact is precisely dimensioned as any 2D drawing would be. Holes in the channel are also features, as would be chamfered ends. The benefit of features is in how easily they can be changed. Changing the length of the channel above is simply a matter of changing the number representing the length. Features like the chamfered ends are related to the ends of the protrusion and automatically move with them. The holes may or may not move, depending on where they are referenced from. So the complete definition of a part in SE is just a list of features, with the appropriate value for each dimension. Every part is SE is a single file stored in a folder. Again this is very much like parts on a shelf out in the warehouse. Solid Edge owes much of it’s robustness to this methodology. You may lose an entire assembly to a computer crash, but it is unlikely that you would lose many parts.
An important thing to note here. There are two important issues to keep in mind when creating your first parts in SE. The first is that the first feature you create is called the base feature. The base feature is anchored to the reference planes for the model. It can be edited in many ways later, but it cannot be deleted, and some things can not be changed without serious consequences because later features may depend on the base feature. An example is a pressure gauge model. It might seem like a good idea to start right from the fitting where it screws into a pipe. Then add a feature for the square portion above that, and finish with a cylindrical feature that represents the dial. If you need another pressure gauge with a different pipe size fitting, no problem, just adjust the base feature. However if you need another gauge with a flush face diaphragm connection, or a back connection, oops! You now have to start from scratch because you won’t be able to make major changes to the base feature, or move it to the back. Take a few minutes to look down the road at how you might use this part in the future, as the basis for other parts. You will be well rewarded for doing this.
When you need a new part it is always a good idea to see if you can start from an existing part. There are two important reasons for doing this. The obvious reason is that it likely will be much less work if most of the original part can be reused. The not so obvious reason is that the new part based on an old part will have the same reference planes and/or surfaces. This means that you chances of being able to just replace an old part in an existing assembly and having that assembly not break apart are far greater than if you start from scratch. This is because the relationships that SE uses locate parts will be the same for the old part and the new part. If you start from scratch you may use a different base feature for instance and all bets are off.
The second issue to keep in mind is the location of the reference planes when creating the base feature. For many long thin structural shapes it might seem simplest to have one end located on a reference plane. However later on you will realize that it is nearly always better to locate that reference plane at the center of a long part. Later when constructing assemblies that reference plane is extremely useful at making an assembly robust. A robust assembly is one where you can make changes to underlying parts or subassemblies and the whole model doesn’t suddenly explode in every direction. You’ll understand this better when you first do it. Experience, it’s what allows you to recognize a mistake, when you make it again. In reality all three basic reference planes should be centralized and not on one side or the other, in most cases.
In general the geometry of all common parts is contained in the parts files in the library. The library contains exactly one unique copy of every part, or should. It is very bad if you have multiple parts with the same name in the library, say in different folders. So it is very important when creating new parts that you first check that it doesn’t exist. Note the word ‘common’. The purpose of the library is to share the parts over and over again instead of creating new ones. Some parts though will be unique to a single job. For instance, a piece of angle of a specific length with a hole, used in building a pump skid. That part would most likely be created by copying an existing part found in the library, saving it in the job folder with a unique name different from the name in the library, and then changing it as needed. The library is a very efficient way to work. Since it only contains one copy of every part it is quite compact. Because those parts get used in assemblies, changes to these parts are reflected in every assembly they are used in automatically.
It is important to mention here the concept of ‘released’ parts. In the real world parts are released when they are completely designed, engineered, and tested. No other changes would be acceptable unless you are making a new part based on the old part, and then all new documentation would be produced. Using a released part means you don’t have to check the engineering on this part every time you use it to be sure it is made correctly. The reasonable assumption is that all parts made to that specification will work the same. SE uses a similar concept. A part that has been released in SE cannot just be changed at will. Because it can’t be changed at will SE does not have to check for changes in the part every time it loads the part into an assembly. By definition no changes can have occurred since the last time the part was opened. So all purchased parts are normally released, because we don’t make them and can’t change them. All parts we make that are stored in the library should be released, at the point in time when we are sure they need no further modifications. A good example is when you have modeled a purchased part from a vendor drawing with only the most basic dimensions. Those dimensions may be sufficient to locate the part in a model but not enough to make a good representation. So you may leave that part unreleased until the actual parts are obtained, and changes are made. At that point you would release the part. To change a released part later you must make a copy, save it disk under a slightly different name, delete the old part, and change the name of the new released part to exactly the same name as the old part. This must NOT be done without discussion FIRST! Doing so can seriously damage all assemblies using this part if you are not very careful.
ASSEMBLIES

If you make parts in the real world then skill at making parts in the computer 3D world will be very important to you. However if your job is mostly putting together purchased parts to build assemblies then part modeling will only happen for you when you are missing a part. This may also be good indicator that you are trying to use some non-standard part, and you should discuss that before going ahead and modeling a new part! An assembly in SE is a collection of parts and other assemblies, as subassemblies, that are precisely located with respect to one another. In other words it is a multilevel Bill Of Materials with the top level being the assembly you are working on, containing parts with locations, and subassemblies which are lists of other parts. Subassemblies may contain other subassemblies to any depth required. This is again very much like the way real world machines are built. SE assemblies are quite compact files. They only contain a list of the name and path of parts and subassemblies, along with location and orientation data. All of the geometry for the model is actually located in the library of parts and common subassemblies. This has two important implications. You can’t just use Windows Explorer to copy an assembly to a CD or memory stick to take it to another computer. All you’ll get is the empty assembly and no parts. If the other computer contains an identical library the assembly still won’t find the parts, unless the path to the library is exactly the same as on the original computer. You can make this kind of move though using Insight Connect included with SE. All of the parts and subassemblies required can be copied to a common folder with the top most assembly, or the paths can be changed to the new library location.
The second implication is VERY IMPORTANT!! As a new user you may think you are going to work safely and use Windows Explorer to copy an existing assembly to a new folder in a different location, or even off the server to you own computer. THIS IS NOT SAFE! ALL SE assemblies contain the complete path for every part and subassembly back to where it was originally located. Any changes you make to those parts or subassemblies will be made to the original parts or subassemblies, NOT a copy! So you are destroying the original model. It would be nice to just set you up to work offline somewhere else for a while. In practice however that means a lot of rework to use anything you have done while learning. So you need to be VERY clear about this issue before you ever use SE.

This ability of SE to link every model to a common library, and to even link one model to another in every way imaginable is both a powerful advantage and a huge risk that must be managed. Imagine the case where a model is created that you decide would work well on a different job, with a few minor changes. So you copy the top most assembly with all of its links, to the other model still intact. You then copy a subassembly that needs changing into your assembly folder and modify it. Done deal, your job is completed quickly. As time goes on these links between jobs begin to grow and multiply. You may even wind up with links passing in both directions! At this point you discover that this old job has taken on a life of its own. You can never delete or change it directly, without affecting every job that references it. In the case of a manufacturer of a single line of parts say valves the chances of this becoming a big issue are fairly small. In the case of an ETO (Engineer to Order) company the chances of creating a bowl of spaghetti is quite high. Try to take this model home with you on the weekend to put in a little OT and you’ll find that you either need to bring home every job folder that is linked or you have to create an encapsulated version that has all the parts and subassemblies needed. That encapsulated version will be very difficult or impossible to move back to the server and properly link back.
For this reason when using an existing job as a starting point we will start all new jobs by using Insight Connect to copy the existing job to a new folder. In the process all of the unique parts and assemblies in the job folder will get copied and renamed to new and unique names. To make this process work efficiently and safely we need to use the assembly or fabrication number as part of the file name. For instance, The original job file should contain parts and assemblies that look like this 201061F30, Angle Iron, Support.par and 201061A30, Pump Suction.asm. The first is a part of a fabrication F30 used in job 201061 and assembly A30 for that job. The second is a subassembly used in Assembly A30 of job 201061. Since both parts and assemblies contain the same six digit job number then we can be sure that these parts and assemblies are unique to this job. When we copy this job to a new folder for a new job we will use Insight Connect, not Windows Explorer.

The first step is to pick the top most assembly, or the draft file if there is one for that top most assembly. In Insight Connect we then expand the assembly so we can see all files. Then we select all files containing the old job number. We use Edit/Replace to search for all instances of the job number 201061 in the selected files and replace it with the new job number, say 205002. Finally we execute the process and the old job gets copied to a new folder with all parts and assemblies in the folder having new and unique file names, because they include the new job number. NONE of the subassemblies in this folder refer to any of the parts or subassemblies in the old folder. However all references to the library still are linked to the library, because the library parts did not contain the job number as part of the file name so they didn’t get changed. The other positive consequence of this process is that parts or subassemblies you created while designing the old job, but didn’t use, don’t get copied to the new folder. This cleans up the new job to just what is required. You can now work safely on this job without worrying about doing damage elsewhere. All new users need to have this process demonstrated and used BEFORE you start playing with SE!
BUILDING ASSEMBLIES

We are going to discuss the building of assemblies here further because for the most part that represents 90% of the work we do in SE. You may ask where do you start on a job. Most of the time you will not start with the upper most assembly or Master assembly. Think about building a pump skid. It might seem like a good idea to build the base first, then put the pumps on the base and add the plumbing. The tough question to answer here would be “how big does the base need to be to hold the pumps and the plumbing?” So a more practical starting point would be to create or locate in the library the part model of the pump and place that in an assembly. The first part you add to an assembly gets ‘grounded’. This means its reference planes will be aligned with the reference planes in the new assembly. I highly suggest you press Ctrl I or Ctrl M and see which way the part flips. If your pump winds up upside down or sideways I would remove the ground relationship and create new planar relationships between the pump reference planes and the assembly reference planes that keep the assembly upright. This way Ctrl I and Ctrl M will always flip things the right way. All the other shortcut keys for Right, Left, Top Bottom, Front, and Back will likewise work as expected.
Next you’ll probably start to add the suction plumbing and the discharge plumbing for the pump. It would be a good idea to make each of these in assemblies of their own. This would allow you to easily try alternate designs, or copy the assemblies to a second pump, or to easily create left and right assemblies for two pumps. There are multiple ways to accomplish this. Create a the new assemblies right in the existing assembly, open a new assembly file and build the new assembly then add it to the assembly containing the pump, or add the parts in this assembly and then transfer them to a new assembly later. This is pretty much your choice. All parts and subassemblies get added to the assembly you are building in the same way. You pick a part or assembly in the edge bar and it either opens in the assembly or in a new window. You then choose the first relationship to locate the part or assembly, and pick the geometry for that relationship for both the new part and where it goes in the new assembly. Sometimes the part flips every which way as SE tries to resolve the relationships down to a completely unique and unambiguous state. Right away you’ll discover that you need at least three relationships for every part or subassembly, and that this is very tedious work!
As mentioned before subassemblies can be used in other subassemblies to any level of complexity required. So one way to greatly reduce the work of complex assemblies, is to create smaller assemblies that get used over and over. For instance, a flanged valve always gets installed between flanges. So it makes sense to create an assembly of the flanged valve, the two flanges, the gaskets, and the nuts, bolts, and washers required to put it all together. SE even helps here by allowing you to pattern one bolt, nut, and two washers around the holes in the flange as one operation, instead of placing every nut, bolt, and washer as a separate tedious operation. Forever afterwards when you need that valve and those flanges you just place this subassembly in your model. Need a different flange on one side of the assembly? Copy it, and replace the one flange. Then save it as another unique assembly. Since these assemblies are made from purchased or created parts that are released they should also be released because they will never again be modified, only copied. They also get saved in the library since they can be used in any job. Note the rule, only and all parts that never need to be modified should be in the library.
It is possible to take the concept of subassemblies too far. For instance making a subassembly of the bolts in the bolt circle used in the valve assembly above would most likely be going a step too far. To locate the bolts in the bolt subassembly you’d have to make a sketch to locate the bolts. Doing that requires getting the flange bolt hole spacing and pattern. When SE uses the assembly it has to work down all the way to the lowest assembly to show it. When you use this assembly in a draft file you will not only need to be sure you expand the valve assembly to get all the parts shown, you’ll also have to expand the bolt assembly, every time you use the valve assembly, in every job. Better to let SE do the heavy lifting. Place one bolt, nut and two washers, then let SE pattern them based on the flange or valve already there. A general rule is that if a subassembly will only be used in a subassembly that never changes, IE. it is released, then that subassembly is unnecessary and most likely decreases performance rather than enhancing it.
Getting back to our pump skid, once we have created the subassemblies for the pumps, suction piping and discharge piping we now know enough about how big the frame will need to be to support the pumps and piping. So we might now create a frame subassembly. Then we’d create a Master skid assembly, add the frame and orient it properly upright, and bring in the pump and piping subassemblies. At this point you are free to edit each subassembly right in the master assembly or open each one in its own window and use Ctrl Tab or the Windows menu to jump between them. As you build interferences and such become apparent and need to be dealt with. Parts need to be moved, some parts, say a 4” nipple, needs to be replaced with a 5” nipple. You easily make this changes in a number of ways is SE, and we’ll cover these ways by demonstration during training.

One issue common to the kind of work we do though is the topic of materials that vary in length like pipe, angle iron, channel etc. Solid Edge uses a separate file for every part. So it might seem that the right way to work is to make parts of varying lengths, name them with the length indicated, and save them in the Library. Now when you need a piece of pipe 36” long you just pick it from the library and use it if available. So you’ve built this assembly with two pieces of pipe, one 39-7/16” long connected to a valve and another piece 21-1/4” long on the other end of the valve. Now you find out that the valve needs to move over 2-3/16” in one direction. So you simply add 2-3/16 to 39-7/16 to get? Then you look in the library folder of hundreds of parts for a part ? long. Oops there isn’t any. No problem, just copy the existing part and save it under a new name indicating the new length, and remember to also indicate that new length in the title field so that is how it appears on the BOM. Replace the existing part with the new part and you’re done, except you need to do the same exercise on the piece of pipe on the other side of valve, except you need to subtract 2-3/16” to get? Sounds a little time consuming, and it is. Not only that continually adding random lengths of material to the library, just makes the library huge and slower to work with.

Solid Edge has a better mechanism for dealing with this. Variables for dimensions like the length of a part can be exposed so they appear in the BOM. So using the pipe and valve example above you would pick out a pipe size part that has no length in it’s file name in the library. It also won’t have a length as part of its description that appears in the BOM. However it does have the exposed variable Length, which can be shown in the column titled Length in the BOM. So you start building this assembly a little differently. You open the part with no length in the library and immediately save it to the job folder, adding the job number assembly number to the front, and an item number to the end. So Pipe, 3, PVC.par becomes 201061A30, Pipe, 3, PVC, 1.par. Knowing that you are going to need say five pieces of pipe you save it five more times, incrementing the last digit item number to produce five part files with a unique name. Now you build your assembly with two pieces of pipe and the valve. Click on each pipe part and edit the length to the lengths used above. These parts are now ONLY used in this job. That means you are free to edit them at will without concern that you will damage other jobs. It also means you get to let SE do the heavy lifting. Let’s move that valve over 2-3/16” again. Click on the first part, Click Edit, and choose the length. Move the cursor to the end of the length shown and type +2 3/16 then hit enter. SE understands fractions and decimals and combinations of them too. It adds them together for you, no calculator required. Exit edit mode and click on the second pipe, and this time subtract 2-3/16”, you are done. The bill of material also accurately reflects your change. Need to make a pipe already in the model reach to a fitting already in the model? Measure the distance from the pipe end to the fitting. Edit the pipe length and let SE add that amount, done. Nothing comes for free though. You need to be careful not to reuse the same pipe item in more than one place, unless that is really what you want to do. It also does take a little time to create those initial pipe pieces, and you may need to create more as you go. This job folder is going to be bigger too so some disk space gets wasted. However the benefits of faster assembling and editing easily outweigh the problems in this case. And again SE closely models the real world of how pipe is handled in the shop.
2D DRAWINGS IN DRAFT

In most cases you will use the Draft environment as the last step in your design. Here you will take you 3D model and make line drawing views that get printed on paper. The process starts by selecting a template and opening a new Draft file. Templates are used here so that your draft is configured for the type of drawing you are going to make, an assembly drawing, a fabrication drawing etc., and to get the appropriate border and title block. You then select your 3D model, what views you want, and SE creates the selected views automatically. In the case of a part model the next step would be dimensioning the various views, and possibly creating other types of views such as section views or detail views as needed. SE uses styles to automatically give you the correct dimension sizes, fonts, arrow types etc. So dimensioning a part drawing goes very quickly, and looks very nice.

An assembly drawing works a little differently. If you pick the 3D model and select a couple of views you’ll get the entire model in every view. This may be okay for a couple of views, but you usually need partial views of subassemblies to show how they get put together. In addition you will be creating a BOM for all the parts. Our assemblies are not so huge that the BOM needs to be broken up into multiple BOMs. So we create the master BOM from one of the views that shows the entire assembly. When we balloon parts to indicate part numbers, we want all the balloons in all the views to correspond to just the one BOM. This can be accomplished by creating all views from the entire model, then hiding whatever you don’t need. This is pretty easy to do since you can hide entire subassemblies with one click. Alternately, you can hide the entire model, then unhide the one subassembly or part you want in the view. Because SE makes it so easy and fast to create new views it is very desirable to use many views to show how a product is assembled. This helps the shop assign work. One person can be given a sheet that details how all the various pieces of angle iron get cut, drilled, and notched. Another person gets a piping subassembly that can be completely fabricated, even though the frame it goes on hasn’t been received. A final view shows how all those various pieces come together in the final product.
There is a gotcha here though. Isn’t there always? You’ve gone through the engineering review of your design and it has been suggested that you add a pressure gauge at point B. No big deal you say, and you proceed to add a tee and a pressure switch in a short run of pipe in your model. You then open the draft file and hit update to bring it up to date with the change. All of a sudden 20 views have exploded all over the drawing! Nothing fits in the borders any more! You can’t even select some of the views because they are hidden behind others! OH SH…. you scream! I was just about done! SE has decided you needed a little help. Those new parts weren’t there when you created all those views. So to make sure you didn’t forget to show them, and balloon them, or dimension them, it added them to every view. Of course those parts would be off to the side out of view in most views, but SE doesn’t know that, so it rescales every view to bring them in to sight! You are now in for a tedious hour or couple hours rescaling and updating every view one at a time.

There is another way. It is called View Configurations in Assembly. While you are working on your model in assembly you can view and hide parts and subassemblies in many ways. In fact it is much easier to pick the right parts in a 3D environment that you can turn and tumble than in a 2D view in draft where parts may often be hidden behind others. So you can show just those parts you are going to want in a view in draft, name that configuration and save it. Then when creating the views in Draft you can use the appropriate View Configuration and only those parts and subassemblies will show. Better yet, unless the new parts you inevitably add are actually in a View Configuration the view will not blow up! Creating the Draft file for a job the other way means that every time someone uses it again, with just a tiny little change, you risk it blowing up. If you didn’t even create the original draft you are in for one fine time trying to fix it too!
This is a gotcha here though! View Configurations have some warts. The big wart is that they don’t automatically update when you make changes to your assembly model. This means that after adding that pressure gauge, you needed to select which view configurations it should appear in. Then unhide it, and resave that View Configuration.

SHEETMETAL PARTS
Solid Edge has an environment for creating sheet metal parts. Currently we have just a few parts created that way, so we won’t talk about it here.

WELDMENTS

Solid Edge also has a weldment environment. An assembly is brought into this environment and weld preparations and weld beads can be added to the assembly. We don’t currently use this environment, and shouldn’t. This is because it disappears in Version 18 and becomes part of Assembly.
